

PACIFIC DRIVE PTY LTD

Geotechnical Investigation

10-16 Pacific Drive, Port Macquarie, NSW

E24947.G03_Rev1 31 May 2022

Document Control

Report Title: Geotechnical Investigation, 10-16 Pacific Drive, Port Macquarie, NSW

Report No: E24947.G03_Rev1

Copies	Recipient
1 Soft Copy (PDF – Secured, issued by email)	Brian Hood Pacific Drive Pty Ltd Suite 1, Level 3, 51 Pitt Street SYDNEY NSW 2000
2 Original (Saved to Digital Archives) (Z:\07 - Projects\E24947_Britely_Port Macquarie_PSI_GI\05_Deliverables\Work in Progress\E24947.G03_Rev2 - Geotechnical Investigation Report.docx)	El Australia Suite 6.01, 55 Miller Street, PYRMONT NSW 2009

Author **Technical Reviewer** Kayn and hanging Kaiyu Xu Nauman Jahangir **Geotechnical Engineer Senior Geotechnical Engineer** Revision Details Date Amended By Original 14 January 2021 KΧ 1 Updated architectural drawings 22 April 2022 NJ 1 31 May 2022 Groundwater Responses

© 2022 El Australia (El) ABN: 42 909 129 957

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

Table of Contents

Page Number

1.	ΙΝΤΙ	RODUC ⁻	TION	1	
	1.1	Backgr	ound	1	
	1.2	Propos	ed Development	1	
	1.3	Objecti	ves	2	
	1.4	Scope	of Works	2	
	1.5	Constra	aints	3	
2.	SITI	E DESCI	RIPTION	4	
	2.1	Site De	escription and Identification	4	
	2.2	Local L	and Use	5	
	2.3	Region	al Setting	5	
3.	INV	ESTIGA	TION RESULTS	7	
	3.1	Stratigr	raphy	7	
	3.2	Ground	Jwater Observations	7	
	3.3	Test Re	esults	8	
4.	REC	COMME	NDATIONS	9	
	4.1	Geotec	chnical Issues	9	
	4.2 Dilapidation Surveys				
	4.3	Excava	ation Methodology	9	
		4.3.1	Excavation Assessment	9	
		4.3.2	Excavation Monitoring	9	
	4.4	Ground	Iwater Considerations	10	
		4.4.1	Further Investigation of Ground Water and El Responses	10	
	4.5	Excava	ation Retention	11	
		4.5.1	Support Systems	11	
		4.5.2	Retaining Wall Design Parameters	12	
	4.6	Founda	ations	13	
		4.6.1	Raft Slab	13	
		4.6.2	Pile Footings	14	
	4.7	Basem	ent Floor Slab	14	
	4.8	Subgra	ide Preparation and Engineered Fill	15	
		4.8.1	Subgrade Preparation	15	
		4.8.2	Engineered Fill Specifications	15	
5.	FUF		GEOTECHNICAL INPUTS	17	
6.	STA	TEMEN	T OF LIMITATIONS	18	
RE	FERE	ENCES		19	

Schedule of Tables

Table 1-1	Augering/Wash Boring Depths	2
Table 2-1	Summary of Site Information	4
Table 2-2	Summary of Local Land Use	5
Table 2-3	Topographic and Geological Information	5
Table 3-1	Summary of Subsurface Conditions	7
Table 4-1	Geotechnical Design Parameters	13

Appendices

GU	IR	ES
		_
	GU	GUR

Figure 2 Borehole Location Plan

APPENDIX A - BOREHOLE LOGS AND EXPLANATORY NOTES

APPENDIX B – LABORATORY CERTIFICATES

APPENDIX C – IMPORTANT INFORMATION

1. Introduction

1.1 Background

At the request of Pacific Drive Pty Ltd (the Client), El Australia (El) has carried out a Geotechnical Investigation (GI) for the proposed development at 10-16 Pacific Drive, Port Macquarie, NSW (the Site).

This GI report has been prepared to provide advice and recommendations to assist in the preparation of designs for the proposed development. The investigation has been carried out in accordance with the agreed scope of works outlined in El's proposal referenced P18820.1_Rev1, dated 19 November 2020, and with the Client's signed authorisation to proceed, dated 20 November 2020.

1.2 Proposed Development

The following documents, supplied by the Client, were used to assist with the preparation of this GI report:

- Pre-lodgement Meeting Advice for Application by Port Macquarie Hastings Council, Reference 210.2020.69, dated 11 November 2020;
- Architectural drawings prepared by D.R. Design (NSW) Pty Ltd Project No. 22-020, Drawing Nos. DA-0-001 (Rev B), DA-0-002 (Rev C), DA-0-104 (Rev B), DA-0-210 to DA-0-214 (Rev B), DA-0-215 to DA-0-218 (Rev C), DA-0-302 (Rev B), DA-0-303 (Rev C), DA-0-401 (Rev B) and DA-0-402 (Rev B), dated 20 April 2022;
- Site survey plan prepared by LandDynamics Australia Job No. 5115, Drawing No. 0001, Revision E, dated 23 June 2021. The datum in the survey plan is in Australian Height Datum (AHD), hence all Reduced Levels (RL) mentioned in this report are in AHD;
- Preliminary Review of Stormwater and Groundwater Issues Letter prepared by Bewsher Consulting Pty Ltd, Reference J2416L_1.docx dated 30 April 2022.

Based on the provided documents, EI understands that the proposed development involves the demolition of the existing site structures and the construction of a six-storey (Building A) and a five-storey (Building B) residential development overlying a common stepped basement carpark. Building A is located at northern portion of the site at a higher elevation overlies a two-level basement carpark and Building B is located at southern portion of the site at a lower elevation overlies a single-level basement carpark. The lowest basement level is proposed to have a Finished Floor Level (FFL) between RL 28.25m (Building A) and RL 26.95m (Building B). A Bulk Excavation Level (BEL) between RL 28.0m (Building A) and RL 26.7m (Building B) is assumed, which includes allowance for the construction of the basement slab. To achieve the BEL, excavation depths varying from 4.3m to 8.8m Below Existing Ground Level (BEGL) along the eastern excavation perimeter and from 2.4m to 8.1m along the western perimeter are expected. Locally deeper excavations may be required for footings, lift overrun pits, crane pads, and service trenches. The proposed basement has a minimum setback of 6.0m from the northern boundary, 1.5m from the western boundary, 6.0m from the southern boundary, and 1.3m from the eastern boundary.

As per pre-lodgement advice referred above, Planning Item 15, states the following:

15) Potential for ground water/aquifer interference and need to determine whether dewatering required with basement excavation. Geotechnical investigation required. Depending on the

findings the proposal may also be integrated development under the Water Management Act 2000 and referral to NSW Natural Resource Access Regulator would be undertaken.

1.3 Objectives

The objective of the GI was to assess existing site surface and subsurface conditions at four borehole locations, and to provide preliminary geotechnical advice and recommendations addressing the following:

- Dilapidation Surveys;
- Excavation methodologies and monitoring requirements;
- Groundwater considerations;
- Vibration considerations;
- Excavation support requirements, including preliminary geotechnical design parameters for retaining walls and shoring systems;
- Building foundation options, including;
 - Preliminary design parameters.
 - Earthquake loading factor in accordance with AS1170.4:2007.
- The requirement for additional geotechnical works.

1.4 Scope of Works

The scope of works for the GI included:

- Preparation of a Work Health and Safety Plan;
- Review of relevant geological maps for the project area;
- Site walkover inspection by a Geotechnical Engineer to assess topographical features and site conditions;
- Scanning of proposed borehole locations for buried conductive services using a licensed service locator with reference to Dial Before You Dig (DBYD) plans;
- Auger drilling of four boreholes (BH1M, BH2M, BH3 and BH4) by a track-mounted drill rig using solid flight augers equipped with a 'Tungsten-Carbide' (T-C) bit. Boreholes, BH1M and BH2M, were continued using wash boring methods to depth of about 20.20m, RL 17.80m and RL7.30m, respectively. The boreholes were auger/wash bored to depths as shown in Table1-1 below:

David als ID	Augering/ Wash Boring		
Borenole ID	Depth (m)	RL (m AHD)	
BH1M	20.20	17.80	
BH2M	20.20	7.30	
BH3	14.50	19.00	
BH4	9.50	26.60	

Table 1-1 Augering/Wash Boring Depths

- Standard Penetration Testing (SPT) was carried out (as per AS 1289.6.3.1-2004), where possible, during auger drilling of the boreholes to assess soil strength/relative densities;
- Measurements of groundwater seepage levels, where possible, in the augered sections of the boreholes during and shortly after completion of auger drilling;
- The approximate surface levels shown on the borehole logs were interpolated from spot levels shown on the supplied survey plan. Approximate borehole locations are shown on Figure 2;
- Boreholes BH1M and BH2M were converted into two groundwater monitoring wells with depth of 11.20m BEGL (RL 26.80m) and 2.50m BEGL (RL 27.00m) respectively to allow for long-term groundwater monitoring;
- Boreholes BH3 and BH4 were backfilled with drilling spoils upon completion;
- Soil samples were sent to STS Geotechnics Pty Ltd (STS) and SGS Australia (SGS), which are National Australian Testing Authority (NATA) accredited laboratories, for testing and storage; and
- Preparation of this GI report.

An EI Geotechnical Engineer was present full-time onsite to set out the borehole locations, direct the testing and sampling, log the subsurface conditions and record groundwater levels.

1.5 Constraints

The GI was limited by the intent of the investigation and the presence of existing site structures. The discussions and advice presented in this report are preliminary and intended to assist in the preparation of designs for the proposed development. Further geotechnical inspections should be carried out during construction to confirm the geotechnical and groundwater models, and the preliminary design parameters provided in this report.

2. Site Description

2.1 Site Description and Identification

The site identification details and associated information are presented in **Table 2-1** below while the site locality is shown on **Figure 1.** An aerial photograph of the site is presented in **Plate 1** below.

	Table 2-1	Summary	of Site	Informatio
--	-----------	---------	---------	------------

Information	Detail		
Street Address	10-16 Pacific Drive, Port Macquarie, NSW		
Lot and Deposited Plan (DP) Identification	Lot 1 and 2 in DP 538077 and Lot A in DP441800.		
Brief Site Description	At the time of our investigation, the site was occupied by a two-storey brick residential building located within the north-western portion. The building structure appeared to be in fair condition based on a cursory inspection of the exterior walls. The areas towards the south of the residential building were concrete paved and connected with the Pacific Drive by a driveway. The concrete pavement was in fair condition. The remaining area of the site was vacant and covered with grass.		
Site Area	The site area is approximately 2990m ² (based on the provided survey plan referenced above).		

Plate 1: Aerial photograph of the site (source: SIX Maps, accessed 14/12/2020)

2.2 Local Land Use

The site is situated within an area of residential use. Current uses on surrounding land at the time of our presence on site are described in **Table 2-2** below.

Table 2-2 Summary of Local Land Use

Direction Relative to Site	Land Use Description
North	Properties at No. 9 Pacific Drive, Nos. 2 and 6 Windmill Street. No. 9 Pacific Drive is a two-storey brick residential building with tile roof, grassy areas and a concrete driveway. No. 2 Windmill Street is a three-storey residential building with a concrete driveway. No. 6 Windmill Street is a three-storey residential building with one level basement.
	The buildings have offset of about 2-6m from the northern site boundary and appeared to be in good condition based on inspection of the external walls. The three properties are slightly on higher elevation than the site.
East	Lot 101 in DP 1244390, grassy vacant land. Beyond this is Pacific Drive, a two lane, asphalt-paved road, followed by a cliff face along the shoreline of the Pacific Ocean.
South	Property at No. 17 Pacific Drive, a two-storey residential house with a concrete driveway. The building has an offset of about 1-2m from the southern site boundary and appeared to be in good condition based on inspection of the external walls. The house is slightly lower than the site.
West	Properties at Nos. 6 and 8 Macquarie Place and No. 3 Home Street.
	No. 6 Macquarie Place is a two-storey residential building with a concrete driveway. No. 8 Macquarie Place is a two-storey brick residential building with a concrete driveway.
	No. 3 Home Street is a single storey brick residential building with concrete driveway. The buildings have an offset of about 2-5m from the western site boundary and appeared to be in good condition based on inspection of the external walls. The three properties are slightly lower in elevation than the site due to naturally sloping ground.

2.3 Regional Setting

The site topography and geological information for the locality is summarised in Table 2-3 below.

Table 2-3	Topographic and Geological Information
Attribute	Description
Topography	The site is located on the lower west side of the road within gently (<10°) southwest dipping topography with site levels varying from RL 39.65m at the north-eastern site corner to RL 28.55m at the south-western site corner.
Regional Geology	Information on regional sub-surface conditions, referenced from the NSW Department of Primary Industries, Hastings 1:250,000 Geological Series Sheet, reference SH56-14 (1970) indicates the site to be underlain by Serpentinite, ultrabasic intrusives (Ps). Based on geological map, an approximately located fault is extending in a North-South direction through the site.

Plate 2: Excerpt of geological map showing location of site.

3. Investigation Results

3.1 Stratigraphy

For the development of a site-specific geotechnical model, the stratigraphy observed in the GI has been grouped into three geotechnical units. A summary of the subsurface conditions across the site, interpreted from the assessment results, is presented in **Table 3-1** below. More detailed descriptions of subsurface conditions at each borehole location are available on the borehole logs presented in **Appendix A**. The details of the methods of soil and rock classifications, explanatory notes and abbreviations adopted on the borehole logs are also presented in **Appendix A**.

Unit	Material ²	Depth to Top of Unit (m BEGL) ¹	RL of Top of Unit (m AHD) ¹	Observed Thickness (m)	Comments
1	Fill ⁴	Surface to 0.50	36.10 to 38.00	0.30 to 0.50	Fill consisting of silty clay, low plasticity with igneous gravels observed in BH1M and silty sand with traces of rootlets observed in BH4. No Fill was observed in BH2M and BH3
2	Stiff to Very Stiff Silty Clay	Surface to 0.50	29.50 to 37.50	1.20 to 2.50 ³	High plasticity, stiff to very stiff silty clay with igneous gravels. SPT values ranged from 13 to 30.
3	Hard Silty Clay	1.50 to 3.00	34.90 to 35.00	_ 4	High plasticity, hard silty clay with igneous gravels. SPT values are 30 and refusal indicated by hammer bounced.

 Table 3-1
 Summary of Subsurface Conditions

Note 1 Approximate depth and level at the time of our assessment. Depths and levels may vary across the site.

Note 2 For more detailed descriptions of the subsurface conditions, reference should be made to the borehole logs attached to **Appendix A**.

Note 3 Observed up to termination depth in BH2 and BH3. Thickness of this unit is based on BH1M and BH4. Note 4 Observed with in BH1M and BH4 only.

3.2 Groundwater Observations

Following completion of auger drilling, the boreholes were left open and groundwater levels were measured within the boreholes during the fieldwork. We note that no free standing groundwater in the boreholes was observed after drilling of the boreholes.

A further inspection of the monitoring wells was carried out on 12th May 2022 after recent heavy rainfall. No standing groundwater was recorded in the installed wells. It is highly likely that the groundwater may not be present due to low permeable deep silty clay across the site.

No long term groundwater monitoring was carried out.

3.3 Test Results

Five soil samples were selected for laboratory testing to assess the following:

- Atterberg Limits and Linear Shrinkage.
- Soil aggressivity (pH, chloride and sulfate content and electrical conductivity).

A summary of the soil test results is provided in **Table 3-2** below. Laboratory test certificates are presented in **Appendix B**.

Table 3-2	Summary	of Soil	Laboratory	Tost	Rosulte
I abic J-L	Summary	01 3011	Laboratory	ICOL	NESUIIS

Test/	Sample ID	BH1M 10.5-10.95	BH2M 6.0-6.45	BH3 1.5-1.95	BH3 3.0-3.45	BH4 1.5-1.95
Unit		2	2	2	2	2
Mater	ial Description ¹	Silty CLAY	Silty CLAY	Silty CLAY	Silty CLAY	Silty CLAY
	Chloride CI (ppm)	69	26	12	-	-
/ity	Sulfate SO ₄ (ppm)	41	170	50	-	-
ressiv	рН	3.8	3.9	4.1	-	-
Aggi	Electrical Conductivity (µS/cm)	110	140	53	-	-
	Moisture Content (%)	19.9	25.2	23.7	22.6	13.2
Ð,	Liquid Limit (%)	-	-	-	72	59
terbe _imits	Plastic Limit (%)	-	-	-	28	26
At I	Plasticity Index (%)	-	-	-	44	33
	Linear Shrinkage (%)	-	-	-	14	13

Note 1 More detailed descriptions of the subsurface conditions at each borehole location are available on the borehole logs presented in **Appendix A**.

The Atterberg Limits result on the selected clay sample indicated clays to be of high plasticity and of high shrink-swell potential.

The assessment indicated low permeability soil was present above the groundwater table. In accordance with Tables 6.4.2(C) and 6.5.2(C) of AS 2159:2009 'Piling – Design and Installation', the results of the pH, chloride and sulfate content and electrical conductivity of the soil provided the following exposure classifications:

- 'Non-aggressive' for buried concrete structural elements; and
- 'Non-Aggressive' for buried steel structural elements.

4. Recommendations

4.1 Geotechnical Issues

Based on the results of the investigation, we consider the following to be the main geotechnical issues for the proposed development:

- Basement excavation and retention to limit lateral deflections and ground loss as a result of excavations, resulting in damage to nearby structures;
- Reactivity of the underlying natural clays; and
- Foundation design for building loads.

4.2 Dilapidation Surveys

Prior to excavation and construction, we recommend that detailed dilapidation surveys be carried out on all structures and infrastructures surrounding the site that falls within the zone of influence of the excavation to allow assessment of the recommended vibration limits and protect the client against spurious claims of damage. The zone of influence of the excavation is defined by a distance back from the excavation perimeter of twice the total depth of the excavation. The reports would provide a record of existing conditions prior to commencement of the work. A copy of each report should be provided to the adjoining property owner who should be asked to confirm that it represents a fair assessment of existing conditions. The reports should be carefully reviewed prior to demolition and construction.

4.3 Excavation Methodology

4.3.1 Excavation Assessment

Prior to any excavation commencing, we recommend that reference be made to the Safe Work Australia Excavation Work Code of Practice, dated August 2019.

EI assumes that the proposed development will require a BEL between RL 28.00m (Building A) and RL 26.70m (Building B) for the basement, or excavation depths from 4.3m to 8.8m BEGL along the eastern excavation perimeter and 2.4m to 8.1m BEGL along the western perimeter are anticipated. Locally deeper excavations for footings, service trenches, crane pads and lifts overrun pits may be required.

Based on the borehole logs, the proposed basement excavations will therefore extend through all units as outlined in **Table 3-1** above. As such, an engineered retention system to retain the residual soils must be installed prior to excavation commencing.

Excavation can be carried out using buckets of conventional earthmoving Hydraulic Excavators, particularly if fitted with 'Tiger Teeth'.

Furthermore, any existing buried services, which run below the site, will require diversion prior to the commencement of excavation or alternatively be temporarily supported during excavation, subject to permission or other instructions from the relevant service authorities. Enquiries should also be made for further information and details, such as invert levels, on the buried services.

4.3.2 Excavation Monitoring

Consideration should be made to the impact of the proposed development upon neighbouring structures, roadways and services. Basement excavation retention systems should be designed so as to limit lateral deflections.

Contractors should also consider the following limits associated with carrying out excavation and construction activities:

- Limit lateral deflection of temporary or permanent retaining structures;
- Limit vertical settlements of ground surface at common property boundaries and services easement; and
- Limit Peak Particle Velocities (PPV) from vibrations, caused by construction equipment or excavation, experienced by any nearby structures and services.

Monitoring of deflections of retaining structures and surface settlements should be carried out by a registered surveyor at agreed points along the excavation boundaries and along existing building foundations / services/ pavements and other structures located within or near the zone of influence of the excavation. Owners of existing services adjacent to the site should be consulted to assess appropriate deflection limits for their infrastructures. Measurements should be taken in the following sequence:

- Before commencing installation of retaining structures where appropriate to determine the baseline readings. Two independent sets of measurements must be taken confirming measurement consistency;
- After installation of the retaining structures, but before commencement of excavation;
- After excavation to a depth of 1.5m, and every 1.5m interval thereafter;
- After excavation to the base of the excavation;
- After de-stressing and removal of any rows of supports or anchors; and
- One month after completion of the permanent retaining structure or after three consecutive measurements not less than a week apart showing no further movements, whichever is the latter.

4.4 Groundwater Considerations

Free standing groundwater or seepage was not observed within the augered sections of all boreholes. Two piezometers were installed in BH1M and BH2M to depth 1.00m below BEL and the two wells were found to be dry one day after completion of fieldwork. Hence, groundwater is not likely to be encountered during excavation. No long term groundwater measurement was undertaken as it was beyond the scope of the investigation.

4.4.1 Further Investigation of Ground Water and El Responses

El has completed further investigation of groundwater and prepared the following response to hydrological advice provided by the panel dated 30th April 2022.

In relation to item 6 of the Groundwater items, within the letter provided by the panel further investigation was requested in terms of the groundwater assessment. El Australia attended the site on the 12th May 2022 following heavy rainfall, and it was found that there was no standing ground water recorded in existing boreholes (BH1M and BH2M). This can be attributed to the ground condition on the site which have a low permeability and therefore limit the flow of groundwater.

It is however important to note that there was minimal seepage detected on the shallow fill soil and there was shallow groundwater detected. This however can be treated through the onsite stormwater drainage system and EI's understanding is that the Stormwater design and report "5115 SWMP Rev G" prepared by Land Dynamics has adequately addressed the shallow

groundwater issues which the properties on Macquarie Place and Home Street are experiencing.

In response to item 9 the groundwater which is currently being naturally drained as shallow groundwater and surface water into the affected properties is now being captured through the inclusion of agg line drainage (SSD) on the south western perimeter, and being directed to an additional pump out pit, limiting water from spilling into the neighbouring properties, therefore providing a positive benefit to the downslope properties- refer to page 2 of 5 of the Ground Floor Stormwater Concept Plan.

Further to the above, and as per the recommendations outlined in this report, the basement perimeter retaining walls will be designed as wet walls/drained walls, further intercepting any ground water which resides on the edges of the basement, where this water is then directed to a pump out pit within the basement and into the Onsite Detention Tank. This recommendation will further enable the groundwater and surface water which is currently naturally draining to the down slope properties to be intercepted on site and treated as required. While the stormwater drawings provided to date reflect that the basement will be fully tanked, however, the recommendation drained walls recommended by EI Australia should be adhered to and the stormwater design for the basement will likely need minor amendments to capture the drainage methods of the water entering the basement through the wet wall (drained wall) system. This can be implemented during construction and will not affect the current basement design in terms of layout and spatial requirements.

In completing further investigations and reviewing the amended stormwater design following the provision of the Panel's Hydrological advice in the letter dated 30th April 2022, it is El Australia's recommendation that the groundwater spillage being experienced by the South and Western neighbouring properties, will be mostly intercepted and treated on site, providing a positive benefit to the neighbouring properties.

4.5 Excavation Retention

4.5.1 Support Systems

From a geotechnical perspective, it is critical to maintain the stability of all adjacent structures and infrastructures during demolition, excavation and construction works.

Based on provided architectural plans, the proposed basement has a minimum setback of 6.0m from the northern boundary, 1.5m from the western boundary, 6.0m from the southern boundary, and 1.3m from the eastern boundary. Considering the setbacks from the site boundaries and depth of excavation, temporary batters with safe angle of 1 vertical to 1 horizontal may be adopted at south-western portion of Building B basement excavation. However, a suitable retaining structure is required for the remaining excavation perimeters.

A suitable retention system, such as an anchored/propped soldier pile wall, with concrete infill panels, will be required for the support of the excavation. Anchors/props and shotcrete must be installed progressively as excavation proceeds. The use of a more closely spaced shoring system (such as semi-contiguous or contiguous) is recommended adjacent to neighbouring buildings/infrastructures, so as to reduce the lateral movements and the risk of potential damage.

Bored piles are considered to be the most suitable for this site. The proposed pile locations should take into account the presence of buried services. Further advice should be sought from prospective piling contractors who should be provided with a copy of this report.

4.5.2 Retaining Wall Design Parameters

The following parameters may be used for static design of temporary and permanent retaining walls at the subject site:

- Conventional free-standing cantilever walls which support areas where movement is of little concern (i.e. where only gardens or open areas are to be retained), may be designed using a triangular lateral earth pressure distribution and an 'active' earth pressure coefficient, K_a, as shown in Table 4-1;
- Cantilevered walls, where the tops of which are restrained by the floor slabs of the permanent structure or which support movement sensitive elements, should be designed using a triangular lateral earth pressure distribution and an 'at rest' earth pressure coefficient, K_o, as shown in **Table 4-1** below;
- For progressively anchored or propped walls where minor movements can be tolerated (provided there are no buried movement sensitive services), we recommend the use of a trapezoidal earth pressure distribution of 6H kPa for soil, where H is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system, tapering to nil at top and bottom;
- For progressively anchored or propped walls which support areas which are highly sensitive to movement (such as areas where movement sensitive structures or infrastructures or buried services are located in close proximity), we recommend the use of a trapezoidal earth pressure distribution of 8H kPa for soil, where 'H' is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system, tapering to nil at top and bottom;
- All surcharge loading affecting the walls (including from construction equipment, construction loads, adjacent high level footings, etc.) should be adopted in the retaining wall design as an additional surcharge using an 'at rest' earth pressure coefficient, Ko;
- The lateral toe resistance of the retention system can be achieved by sufficient embedment below the ground in front of the wall. For embedment depth design, a triangular lateral earth pressure distribution should be adopted, with a 'passive' earth pressure coefficient, Kp, as shown in **Table 4-1** below, assuming horizontal ground in front of the wall. We note that significant deflection is required in order to mobilise the full 'passive' pressure of a soil, and therefore a factor of safety of at least 2 should be adopted. The 'passive' pressure due to the upper 0.5m below bulk excavation level should be ignored in the analysis to take excavation tolerances into account. All localised excavations in front of the wall (such as pile rig working platform, buried services, footings, lift overrun pits, etc.) should also be taken into account in the wall design;
- If temporary anchors extend beyond the site boundaries, then permission from the neighbouring properties would need to be obtained prior to installation. Also, the presence of neighbouring basements and/or services and their levels must be confirmed prior to finalising anchor design;
- Anchors should have their bond length within Unit 2 or better. For the design of anchors bonded into Unit 2 or better, the geotechnical parameters outlined in **Table 4-1** below may be used, subject to the following conditions:
 - 1. Anchor bond lengths of at least 3m behind the 'active' zone of the excavation (taken as a 45 degree zone above the base of the excavation) is provided;
 - 2. Overall stability, including anchor group interaction, is satisfied;

4. If permanent anchors are to be used, these must have appropriate corrosion provisions for longevity.

Mat	erial ¹	Unit 1 Fill	Unit 2 Stiff to Very Stiff Silty Clay	Unit 3 Hard Clay
RL of Top of	Unit (m AHD) ²	36.10 to 38.00	29.50 to 37.50	34.60 to 35.00
Bulk Unit W	/eight (kN/m ³)	18	20	22
Friction A	Angle, φ' (°)	25	25	30
Effective Col	hesion, c (kPa)	-	5	15
Elastic Mod	lulus, E (MPa)	2	10	40
Earth	At rest, K _o ³	0.58	0.53	0.50
Pressure Coefficients	Active, K _a ³	0.41	0.36	0.33
	Passive, K_p^{3}	-	2.77	3.00
Allowable Bear (kPa) ⁴	ring Pressure	-	150	400

Table 4-1 **Geotechnical Design Parameters**

 AS 1170.4:2007 indicates an earthquake subsoil class of Class C_e.(Shallow Soil) Earthquake Site Risk Classification AS 1170.4:2007 indicates that the hazard factor (z) for Port Macquarie is 0.06.

Notes:

More detailed descriptions of subsurface conditions are available on the borehole logs presented in Appendix A. 1

2 Approximate levels of top of unit at the time of our investigation. Levels may vary across the site.

3 4 Earth pressures are provided on the assumption that the ground behind the retaining walls is horizontal.

To adopt these parameters we have assumed that:

- Footings have a nominal socket of at least 0.3m, into the relevant founding material;
 - Potential soil and groundwater aggressivity will be considered in the design of piles and footings;
 - Piles should be drilled in the presence of a Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Where groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could be used;
 - The bases of all pile, pad and strip footing excavations are cleaned of loose and softened material and water is pumped out prior to placement of concrete;
 - The concrete is poured on the same day as drilling, inspection and cleaning.

The allowable bearing pressures given above are based on serviceability criteria of settlements at the footing base/pile toe of less than or equal to 1% of the minimum footing dimension (or pile diameter).

4.6 **Foundations**

Based on the encountered stratigraphy at the proposed BEL (RL 28.0m to 26.7m), very stiff to hard clays are expected to be exposed. It is recommended that all footings for the building to be founded on similar strength material to provide uniform support and reduce the potential for differential settlements. Based on the size of the development, we recommend that building is supported on pile footings founded into at least hard clays (Unit 3). However, the option of placing the structure on raft slab is also provided.

4.6.1 Raft Slab

Raft slabs are well suited to uniform slab conditions and building loads. Further detailed evaluation of expected performance including the evaluation of allowable bearing pressures and settlements would be required once design loads, founding level, and column layout are better known.

In the case of a piled stiffened raft slab, the piles are designed to their ultimate capacity and act as settlement reducers to the stiffened raft slab.

The subgrade preparation below any raft slabs will be important in the final performance of the raft. Detailed analysis of a piled raft would be required to estimate the settlements and the contact pressures below the raft. Further discussion regarding sub-grade preparation is provided in **Section 4.8** below. It is also recommended that a 150mm thick layer of good quality granular material such as recycled concrete or crushed rock be placed and compacted over the prepared surface, particularly at heavily loaded areas. This layer helps confine the gravelly soils from disturbances and improve the compaction and density of the surface soils.

4.6.2 Pile Footings

Alternatively, the proposed development may be supported on deep footings, such as piles, founded into hard clays.

The piles founded within hard clays can be designed for a maximum allowable bearing pressure of 400kPa.

At least the initial drilling of piles should be completed in the presence of a geotechnical engineer to verify that ground conditions meet design assumptions.

No groundwater was encountered during our geotechnical investigation. However, if groundwater ingress is encountered during pile excavation, concrete is to be placed as soon as possible upon completion of pile excavation. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremmie system could be used. Concrete must be poured on the same day as drilling, inspection and drilling.

The aggressivity of natural soils and groundwater (if encountered) should be taken into consideration in the design.

Footings founded at or near a crest of an excavation (such as the building located to the south outside of the basement outline) should be founded below the zone of influence of the basement retaining walls, which may be taken as founding below a line drawn at 1 Vertical to 1 Horizontal from the base of the retaining walls. It is recommended to use piles.

4.7 Basement Floor Slab

Following the removal of all loose and softened materials, we recommend that underfloor drainage be provided and should comprise a strong, durable, single sized washed aggregate such as 'blue metal gravel'. Joints in the concrete floor slab should be designed to accommodate shear forces but not bending moments by using dowelled and keyed joints. The basement floor slab should be isolated from columns. The completed excavation should be inspected by the hydraulic engineer to confirm the extent of the drainage required.

In addition, a system of sub-soil drains comprising a durable single sized aggregate with perforated drains/pipes leading to sumps should be provided. The basement floor slab should be isolated from columns.

Permission may need to be obtained from the NSW Department of Primary Industries (DPI) and possibly Council for any permanent discharge of seepage into the drainage system. Given the subsurface conditions, we expect that seepage volumes would be low and within the DPI limits. However, if permission for discharge is not obtained, the basement may need to be designed as a tanked basement.

4.8 Subgrade Preparation and Engineered Fill

4.8.1 Subgrade Preparation

Earthworks recommendations provided in this report should be complemented by reference to AS3798.

- 1 Fill should be fully excavated down to surface of the residual soils, and stockpiled separately since these materials are not suitable for re-use as engineered fill. Such excavation may need to be carried out with the excavation sides battered at an angle of no steeper than 1 Vertical to 1 Horizontal. The new fill must be 'keyed-in' the sides of these batters.
- 2 The exposed subgrade at the base of the excavation should be proof rolled with a smooth drum roller (say 12 tonne) used in static or non-vibratory mode of operation. Caution is required when proof rolling near existing infrastructures and utilities (where present). The purpose of the proof rolling is to detect any soft or heaving areas, and to allow for some further improvement in strength or compaction.
- 3 The final pass should be undertaken in the presence of an experienced geotechnician or geotechnical engineer, to detect any unstable or soft subgrade areas, and to allow for some further improvement in strength/compaction.
- 4 If dry conditions prevail at the time of construction then any exposed residual clay subgrade may become desiccated or have shrinkage cracks prior to pouring any concrete slabs. If this occurs, the subgrade must be watered and rolled until the cracks disappear.
- 5 Unstable subgrade detected during proof rolling should be locally excavated down to a sound base and replaced with engineered fill or further advice should be sought. Any fill placed to raise site levels should also be engineered fill, as per the specifications below.

If suspended floor slabs and pavement are designed, then it would be unnecessary to complete any particular subgrade preparation other than stripping of root affected soils from the footprint of the proposed building structures and replaced with surface levelling compacted fill for the floor slab formwork.

4.8.2 Engineered Fill Specifications

Any fill used to backfill unstable subgrade areas, raise surface levels or backfill service trenches should be engineered fill. Materials preferred for use as engineered fill are well-graded granular materials, such as ripped or crushed sandstone, free of deleterious substances and having a maximum particle size not exceeding 75 mm. such fill should be compacted in layers not greater than 200 mm loose thickness, to a minimum density of 98% of SMDD.

Density tests should be regularly carried out on the fill to confirm the above specifications are achieved. The frequency of density testing should be at least one test per layer per material type per 2500 m^2 or 1 test per 500 m^3 distributed reasonably evenly throughout full depth and area or 3 tests per lot, whichever requires the most tests. We recommend that at least Level 2 control of fill compaction, as defined in AS3798-2007, be adhered to on this Site. Preferably, the geotechnical testing authority (GTA) should be engaged directly on behalf of the client and not by the earthworks subcontractor.

We recommend that the engineered fill layers extend a horizontal distance of at least 1m beyond the design geometry. The roller must extend over the edge of each placed layer in order to seal the batter surface. On completion of filling, the excess under-compacted edge fill should be trimmed back to the design geometry.

The 'tying in' of engineered fill to temporary cut batter slopes can be achieved by locally benching the cut slopes in no greater than 0.4m high steps. This can be carried out progressively as the height of engineered fill increases.

For backfilling confined excavations such as service trenches, a similar compaction to engineered fill should be adhered to, but if light compaction equipment is used then the layer thickness should be limited to 100mm loose thickness.

During construction of the fill, platform runoff should be enhanced by providing suitable falls to reduce ponding of water on the surface of the fill. Ponding of water may lead to softening of the fill and subsequent delays in the earthworks program. A poorly drained subgrade may become un-trafficable when wet. We recommend that if soil softening occurs, the subgrade be over-excavated to below the affected soil, and then replaced with engineered fill as specified above..

5. Further Geotechnical Inputs

Below is a summary of the recommended additional work that needs to be carried out:

- Dilapidation surveys;
- Design of working platforms (if required) for construction plant by an experienced and qualified geotechnical engineer;
- Classification of all excavated material transported off site;
- Witnessing installation of support measures and proof-testing of anchors (if required); and
- Geotechnical inspections of all new footings/piles by an experienced geotechnical professional before concrete or steel are placed to verify their bearing capacity and the insitu nature of the founding strata.

We recommend that a meeting be held after initial structural design has been completed to confirm that our recommendations have been correctly interpreted. We also recommend a meeting at the commencement of construction to discuss the primary geotechnical issues and inspection requirements.

6. Statement of Limitations

This report has been prepared for the exclusive use of Brian Hood and Pacific Drive Pty Ltd who is the only intended beneficiary of El's work. The scope of the assessment carried out for the purpose of this report is limited to those agreed with Brian Hood and Pacific Drive Pty Ltd

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the geotechnical industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited investigation of conditions, with specific sampling and test locations chosen to be as representative as possible under the given circumstances.

EI's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. EI may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by EI.

El's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during construction. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

We draw your attention to the document "Important Information", which is included in **Appendix C** of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by EI, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Should you have any queries regarding this report, please do not hesitate to contact EI.

References

AS1289.6.3.1:2004, Methods of Testing Soils for Engineering Purposes, Standards Australia.

AS1726:2017, Geotechnical Site Investigations, Standards Australia.

AS2159:2009, Piling - Design and Installation, Standards Australia.

AS3600:2009, Concrete Structures, Standards Australia

Safe Work Australia Excavation Work Code of Practice, dated October 2018 – WorkCover NSW

NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

HASHIMOTO T.R. & TROEDSON A.L. 2007. *Port Macquarie 1:100,000 and 1:25,000, coastal Quaternary geology map series.* Geological Survey of New South Wales, Maitland.

Abbreviations

AHD	Australian Height Datum
AS	Australian Standard
BEL	Bulk Excavation Level
BEGL	Below Existing Ground Level
BH	Borehole
DBYD	Dial Before You Dig
DP	Deposited Plan
EI	El Australia
GI	Geotechnical Investigation
NATA	National Association of Testing Authorities, Australia
RL	Reduced Level
SPT	Standard Penetration Test
T-C	Tungsten-Carbide
UCS	Unconfined Compressive Strength

Figures

- Figure 1 Site Locality Plan
- Figure 2 Borehole Location Plan

- Access easement boundary Approximate borehole location
- **⊕** ♥
- Approximate borehole/monitoring well location

	WI.C.	
Approved:	K.X.	10-
Date:	20-04-22	

ROAD

Map Source: LandDynamics Australia, Job No: 5115, DWG No: 0001, Dated on: 14-09-2020

Pacific Drive Pty Ltd

Geotechnical Investigation -16 Pacific Drive, Port Macquarie NSW Borehole Location Plan

Figure:

Project: E24947.G03

2

Appendix A – Borehole Logs And Explanatory Notes

BOREHOLE LOG

BH NO. BH1M

P L J J	roject ocatio ositio ob No lient	t on on o.	Propo 10-16 Refer E249 Pacifi	psed Re Pacific to Figu 47.G03 c Drive	sidential Developme Drive, Port Macqua re 2 Pty Ltd	ent rie N	ISW				5 [[[F	Sheet Date Started Date Completed Logged By KX Reviewed By NJ	1 of 3 08/12/2020 08/12/2020 Date 08/12/2020 Date 21/12/2020	
	Drillin Drill R	g Co lia	ntactor	· To Ha	tal Drilling niin DB8			Sur	face RL ≈38.00 m AHD ination -90°					
		Dri	lling		Sampling				Field Material Desc	riptic	on			_
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUC ADDI OBSER	TURE AND TIONAL VATIONS	
			0	38.00				-	FILL: Silty CLAY; low plasticity, orange-brown, with angular igneous gravel.	м	-	FILL		
			- - 1—	0.50 37.50	SPT 0.50-0.95 m 12,9,10 N=19			СН	Silty CLAY; high plasticity, light grey and orange-brown, angular igneous gravel.			RESIDUAL SOIL		
			-		SPT 1.50-1.95 m 11,14,13 N=27						VSt			
			2											-
			- 3— -		SPT 3.00-3.45 m 11,14,17 N=31									-
			- - 4											-
			-		SPT 4.50-4.80 m 17,21/150mm HB						н			
AD/T	-	GWNE	5							M (<pl)< td=""><td></td><td></td><td></td><td>-</td></pl)<>				-
			- 6— -		SPT 6.00-6.45 m 18,12,15 N=27									-
2			- - 7 —								VSt			-
			-	7.50 . 30.50	SPT 7.50-7.93 m 9,17,28/130mm HB				From 7.50m, purple and orange-brown.					
			8											-
			- 9 -		SPT 9.00-9.45 m 11,21,27 N=48						н			-
			-											
		-	· 10—		This boreho	, ole lo	og shoi	uld b	e read in conjunction with EI Australia's accompanying sta	anda	rd no	ites.		

BOREHOLE LOG

BH NO. BH1M

	Pro Lo Po	oject catio sitio	on n	Propo 10-16 Refer	sed Re Pacific to Figu	sidential Developm Drive, Port Macqua re 2	ent arie N	ISW				5 [[Sheet Date Started Date Completed	2 of 3 08/12/2020 08/12/2020	
	Jol	b No	•	E2494	17.G03	Dividited						L	Logged By KX	Date 08/12/2020	
-		rilling	n Co	ntactor	To	tal Drilling			Su	face RI ≈38.00 m AHD			Reviewed by NJ	Date 21/12/2020	
	D	rill R	ig	intuotoi	Ha	njin DB8			Inc	lination -90°					
			Dril	ling		Sampling				Field Material Desc	riptio	on			_
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUC ADD OBSE	CTURE AND DITIONAL RVATIONS	
200 3 LIB CLB Log EN NON-CORED BOREHOLE E 164447 G03 BOREHOLE LOGS GP1 < <- Chammeries - 13/01/20211 6;40 100.000 DangeLah and IN Stu Tool - DCD LID: E.N. 2.00.3 2071-11-21 Prj: ELA 2.00.1 2017-09-26	WB ADIT		GWNE			SPT 10.50-10.95 m 13.26.30 N=56				Sity CLAY; high plasticity, light grey and orange-brown, angular igneous gravel.	M (<pl< th=""><th>н) -</th><th>RESIDUAL SOIL</th><th></th><th></th></pl<>	н) -	RESIDUAL SOIL		
EIA 2						This boren		y sno	uiù D	e reau in conjunction with Er Australia's accompanying si	anua	nu fi0	100.		

BOREHOLE LOG

BH NO. BH1M

	Pro Loc Po: Jol Clir	oject catio sitio b No ent rillin	n a Cor	Propo 10-16 Refer E2494 Pacifi	psed Re Pacific to Figu 47.G03 c Drive	sidential Developme Drive, Port Macquar re 2 Pty Ltd tal Drilling	nt rie N	ISW	Sur	face RL ≈38.00 m AHD		5 [[[F	Sheet Date Started Date Completed Logged By KX Reviewed By NJ	3 of 3 08/12/2020 08/12/2020 Date 08/12/2020 Date 21/12/2020	
	Di	rill R	ig		Ha	njin DB8			Inc	lination -90°					
			Dril	ling	1	Sampling				Field Material Descr	iptio	n			_
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUC ADDI OBSEF	TURE AND TIONAL RVATIONS	
	МВ	-		20 —	20.20			\square	СН			-	RESIDUAL SOIL		
				_	-					Hole Terminated at 20.20 m Target Depth Reached.					
				-	-										
				-											
				21 —											-
				-	-										
				-	-										
				-	-										
				- 22											
				-	-										
				-											
-26				23 —											-
2017-09				-	-										
4 2.00.1				-											
1 Prj: El/				-											
17-11-2'				24 —	-										-
:00.3 20				-											
ib: EIA 2				-											
DGD L				_											
tu Tool -				25 —											-
and In Si				-	-										
jel Lab a				-											
000 Datę				-											
0 10.0.0				26 —											-
02116:4				-											
13/01/2				-	-										
gFile>>				-	-										
< <drawir< th=""><td></td><td></td><td></td><td>27 —</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></drawir<>				27 —											-
s.GPJ <				-											
LE LOG.				-											
OREHO				-											
7.G03 B				28—											-
E2494				-	-										
HOLE 1				-											
D BORE				-											
N-CORE				29											-
EIA NOI				-											
LB Log				-											
.3 LIB.GI				- 30 —											
EIA 2.00.				50		This boreho	le lo	og sho	uld b	e read in conjunction with EI Australia's accompanying sta	ndaı	rd no	tes.		

MONITORING WELL LOG

MW NO. BH1M

Pr	oject	F n 1	Propose	d Resid	dential Development Irive_Port Macquarie NSW/		Sheet Date Started	1 of 1 08/12/2020
Po	ositio	n F	Refer to	Figure	2		Date Completed	08/12/2020
Jo	b No	. E	24947.	G03 Irivo Dt	h. 1 +d		Logged By KX	Date 08/12/2020
	rillin	G Conta	actor	Total	l Drilling Surface RL ≈ 38.00 m A	HD	Reviewed by NJ	Date 21/12/2020
C	rill R	ig		Hanji	in DB8 Inclination -90°			
METHOD	WATER	DEPTH (m)	RL (m AHD)	GRAPHIC LOG	SOIL/ROCK MATERIAL DESCRIPTION	PIEZOMETER CC ID Type Stick Up & RL BH1M Standpipe	DNSTRUCTION DETA Tip Depth & RL Instal 11.20 m 26.80 m	NLS ation Date Static Water Level
		- - 						
					FILL: Silty CLAY; low plasticity, orange-brown, with angular igneous gravel. Silty CLAY; high plasticity, light grey and orange-brown, angular igneous gravel.		Sand	
117-09-26		4 - - -	34 — 34 —				50mm uP\	/C casing
.3 2017-11-21 Prj: EIA 2.00.1 20 AD/T		6 — - - -	32		From 7.50m, purple and grange brown	-	- Bentonite	
n Situ Tool - DGD Lib: EIA 2.00	Щ	8 - - -	30			8.20 m	Sand	
000 Datgel Lab and I	GWh					11.20 m		ve screen
>> 13/01/2021 16:41 10.0.		- 12 — - -	26					
: LOGS.GPJ < <drawingfile< th=""><td>_</td><td>- 14 — - -</td><td>24</td><td></td><td></td><td></td><td></td><td></td></drawingfile<>	_	- 14 — - -	24					
G E24947.G03BOREHOLE 3		- 16 — - -	22				Cuttings	
EIA PIEZOME TER INSTALLATION LO		- 18 — - - -	20					
-B Log E	$\left \right $	20-	18		Hole Terminated at 20.20 m	1852652		
1.3 LIB.GI		-			Target Depth Reached.			
EIA 2.00					This well log should be read in conjunction with	El Australia's accompanying standard no	otes.	

BOREHOLE LOG

BH NO. BH2M

	Pro Lo Po Jol	oject catio sitio b No	on n	Propo 10-16 Refer E2494	sed Re Pacific to Figu 17.G03	sidential Developm Drive, Port Macqua re 2	ent arie N	ISW				י נ ו	Sheet Date Started Date Completed Logged By KX	1 of 3 08/12/2020 09/12/2020 Date 08/12/2020	
	Cli	ent		Pacifi	c Drive	Pty Ltd						F	Reviewed By NJ	Date 21/12/2020	
	Di Di	rilling rill R	g Co ig	ntactor	To Ha	tal Drilling njin DB8			Sur Incl	face RL ≈29.50 m AHD lination -90°					
			Dril	ling		Sampling	_			Field Material Desc	ripti	on			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRU(ADI OBSE	CTURE AND DITIONAL RVATIONS	
IB GLB Lug EIA NON-CORED BOREHOLE 1 E44947 G03 BOREHOLE LOGS GPJ <<0mmnpfile> 1300/I2021 1640 100.000 Dangel Lab and in Silu Tool - DGD [LIb.E H 2.00.2 2017-112] PJ; EA 2.00.2 2017-03-26	AD/T	PE PE	GWNE		29.50 0.50 29.00 29.00 25.50 5.00 24.50	SPT 0.50-0.95 m 7,9,13 N=22 SPT 1.00-1.45 m 8,8,10 N=18 SPT 2.50-2.95 m 5,9,15 N=24 SPT 6.00-6.45 m 6,7,10 N=17 SPT 9.00-9.45 m 5,7,6 N=13			CH	Silty CLAY; high plasticity, dark brown, with subangular igneous gravel. From 0.5m, high plasticity, light grey and orange-brown. From 0.5m, high plasticity, light grey and orange-brown. From 4.0m, pale grey. From 5.0m, pale grey and orange-brown.		VSt	RESIDUAL SOIL		
2.00.3 L				10 —	10.00	This boreh	ole la	l∠. lg sho	uld b	e read in conjunction with El Australia's accompanying st	anda	I no	l		-
EIA								5					-		

BOREHOLE LOG

BH NO. BH2M

	Pro	oject		Propo	sed Re	sidential Developme	ent					\$	Sheet	2 of 3	
	Lo	catio sitio	on n	10-16 Refer	Pacific to Figur	Drive, Port Macqua	arie N	ISW				ם ד	Date Started	08/12/2020	
	Jol	b No		E2494	7.G03	· • •						l	Logged By KX	Date 08/12/2020	
	Cli	ent		Pacific	c Drive	Pty Ltd						F	Reviewed By NJ	Date 21/12/2020	
	D	rillin	g Co	ntactor	Tot	tal Drilling			Sur	face RL ≈29.50 m AHD					
	D	rill R	ig		На	njin DB8		1	Inc	ination -90°					
		7	Dril	ling		Sampling			L L	Field Material Desc	riptio	on ≻∖			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBC	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENC REL. DENSITY	STRUC ADE OBSE	CTURE AND DITIONAL RVATIONS	
EIA NON-CORED BOREMOLE 1 24447,003 BOREHOLE LOCS GPJ < 40mingHies> 130/12021 1840 100 000 Dangel Lab and in Siu Tool-DGD Lib: EIA 200 2 2017-1121 PJ; EIA 200 1 2017-08-26	WB	PENE	GWNE GWNE	Lago 10	DEPTH				CH GROU	Silty CLAY; high plasticity, dark brown, with subangular igneous gravel.	M (<pl< th=""><th></th><th>RESIDUAL SOIL</th><th>RVATIONS</th><th></th></pl<>		RESIDUAL SOIL	RVATIONS	
-IB.GLB L				-											
EIA 2.00.3				20 —		This boreh	ole lo	bg sho	uld b	e read in conjunction with EI Australia's accompanying s	anda	rd no	ites.		

BOREHOLE LOG

BH NO. BH2M

	Pro Lo Po Jol Cli	oject catic sitio b No ent	on n	Propo 10-16 Refer E2494 Pacifi	psed Re Pacific to Figu 47.G03 c Drive	sidential Developme Drive, Port Macquar re 2 Pty Ltd	nt rie N	ISW	0	face RI ≈29.50 m ΔΗΓ		5 [[F	Sheet Date Started Date Completed Logged By KX Reviewed By NJ	3 of 3 08/12/2020 09/12/2020 Date 08/12/2020 Date 21/12/2020	
	Di	rill R	ig ig	inactor	Ha	njin DB8			Inc	lination -90°					
			Dril	ling		Sampling				Field Material Descr	iptio	n			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUC ADD OBSEF	TURE AND ITIONAL RVATIONS	
	WB	-		20 —	20.20			\square	СН			-	RESIDUAL SOIL		
				-	-					Hole Terminated at 20.20 m Target Depth Reached.					
				-	-										
				-											
				21 —											-
				-											
				-	-										
				-											
				22 —											-
				_											
				-											
9				-											
17-09-2				- 23											-
:00.1 20				-	-										
°ŋ: EIA 2				-											
-11-21 F															
0.3 2017				24											
EIA 2.0				-	-										
3D Lib:				-	-										
[ool - D(- 25											
In Situ T				- 25	-										
Lab and				-											
Datgel				-											
0.0.000				- 26											_
16:40					-										
01/2021				-											
le>> 13,				-											
rawingFi				27 —											-
PJ < <d< th=""><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></d<>				-	-										
.0GS.G				-	-										
HOLE L				_											
13 BORE				28 —	-										-
4947.GC				-	-										
E1 E2				-											
DREHOL				-											
RED BC				29 —											-
NON-CC				-											
og EIA I				-											
3.GLB L				-	-										
EIA 2.00.3 LII				30 —		This boreho	le lo	g sho	uld b	e read in conjunction with EI Australia's accompanying sta	ndaı	rd no	tes.		

MONITORING WELL LOG

MW NO. BH2M

Job No. E24947.G03 Logged	By KX Data 09/12/2020
Client Depite Drive Dty Ltd	Date 06/12/2020
Client Pacific Drive Pty Ltd Reviewe Drilling Contactor Total Drilling Surface RL ≈29.50 m AHD	ea ⊨y NJ Date 21/12/2020
Drill Rig Hanjin DB8 Inclination -90°	
Image: Construct of the standpipe Image: Construct of the standpipe PIEZOMETER CONSTRUCt of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe Image: Construct of the standpipe <	TION DETAILS & RL Installation Date Static Water Level 00 m
100 28 20 100 200 100	 Bentonite 50mm uPVC casing 50mm uPVC screen Sand - Cuttings
Hole Terminated at 20.20 m Target Depth Reached.	
This well log should be read in conjunction with El Australia's accompanying standard notes.	

BOREHOLE LOG

BH NO. BH3

Position Refer to Figure 2 Date Completion Job No. E24947.G03 Logged By	Completed 09/12/2020 ged By KX Date 09/12/2020
Client Pacific Drive Pty Ltd Reviewed By Drilling Contactor Total Drilling	iewed By NJ Date 21/12/2020
Drill Rig Hanjin DB8 Inclination -90°	
Drilling Sampling Field Material Description	
Mail	STRUCTURE AND ADDITIONAL OBSERVATIONS
0 35.50 SPT 1.40.1.90 m Image: SPT 1.40.1.90 m	SIDUAL SOIL

BOREHOLE LOG

BH NO. BH3

	ProjectProposed Residential DevelopmentLocation10-16 Pacific Drive, Port Macquarie NSWPositionRefer to Figure 2Job No.E24947.G03											5 [[]	Sheet Date Started Date Completed Logged By KX	2 of 2 09/12/2020 09/12/2020 Date 09/12/2020	
	Clie	ent		Pacifi	c Drive	Pty Ltd						F	Reviewed By NJ	Date 21/12/2020	
	Dri Dri	illing ill Ri	g Coi ig	ntactor	Tot Ha	tal Drilling njin DB8			Sur Inc	face RL ≈33.50 m AHD lination -90°					
_			Dril	ling		Sampling			Field Material Description						
CONTRACT	METHOD PERFETATION RESISTANCE VATER VATER LIGE OKERD RECOVERED RECOVERED GRAPHIC GRAPHIC GRAPHIC GRAPHIC				RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY REL. DENSITY	STRUC ADD OBSE	CTURE AND DITIONAL RVATIONS			
EA 2003 LIB GLB Log ELA NON-CORED BOREHOLE 1 E24447.G03 BOREHOLE LOGS.GPJ < <drawingfile>> 13/01/2021 16:40 10.0.000 DageLab and In Situ Tool - DGD [Lb; EM 2.0.0.3 2017-11-21 Pr]; EA 2.0.1 2017-09-26</drawingfile>		-	GWE		14.50	This boreho		ng sho		Silty CLAY; high plasticity, pale grey and orange-brown, with subangular ironstone gravel.	anda		RESIDUAL SOIL		

BOREHOLE LOG

BH NO. BH4

Pi La Pi Ja C	ProjectProposed Residential DevelopmentLocation10-16 Pacific Drive, Port Macquarie NSWPositionRefer to Figure 2Job No.E24947.G03ClientPacific Drive Pty Ltd										5 [[[F	Sheet Date Started Date Completed Logged By KX Reviewed By NJ	1 of 1 09/12/2020 09/12/2020 Date 09/12/2020 Date 21/12/2020	_
	Drillin	ıg Co	ntactor	Tot	tal Drilling			Sur	face RL ≈36.10 m AHD				2440 2 // 12/2020	
[Drill F	Rig		На	njin DB8		1	Inc	lination -90°					
METHOD	MILLER CON ERED CON ERECT NOT CON THE CONTENT OF CONTENT.				RECOVERED	GRAPHIC LOG	GROUP SYMBOL	Field Material Desc		CONSISTENCY UC	STRUC ADE OBSE	CTURE AND DITIONAL RVATIONS		
ag EN NON-CORED BOREHOLE 1 224947.003 BOREHOLE LOGS GPJ <-DawingFile>> 13/01/20/2116.4/0 10.000 DatgeLab and IN Stu Tool - DGD LU: EM 2.00.3 2017-11-21 Prj: EM 2.00.1 2017-09-26		GWNE		9.50	1.50-1.95 m SPT 1.50-1.95 m 12,14,16 N=30 3.00-3.23 m SPT 3.00-3.23 m 13,19/80mm HB			CH	FILL: Sitty SAND; fine to medium grained, dark brown, trace rootlets Sitty CLAY; high plasticity, brown, with subangular igneous gravel.	M (<pl< th=""><th>- VSt H</th><th>FILL RESIDUAL SOIL</th><th></th><th></th></pl<>	- VSt H	FILL RESIDUAL SOIL		
B.GLB L			-						Target Depth Reached.					
EIA 2.00.3 LI			10		This boreh	ole lo) og sho	uld b	e read in conjunction with EI Australia's accompanying st	anda	l rd no	ites.		

EXPLANATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS

DRILLING/EXCAVATION METHOD

BT Diatube Coring RT Rotary Tricone bit NMLC Diamond Core - 52 mm NDD Non-destructive digging RAB Rotary Air Blast HQ Diamond Core - 63 mm V V-3R PT Push Tube HMLC Diamond Core - 63 mm V V-3R PT Push Tube HMLC Diamond Core - 63 mm V V-3R PT Push Tube EX Tracked Hydraulic Excavator *T TC-Bit, e.g. ADT WB Washbore HAD Excavated by Hand Methods PENETRATION RESISTANCE Penetration' excavation possible with listle effort from equipment used. M H High Resistance Penetration' excavation possible without risk of damage or unacceptable was to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or diffing tools and experience of the operator. Complete Water Loss GWNO GROUNDING Water Level ✓ Partial water loss GWNO GROUNDING WATER NOT DESERVED - Observation of ground water excavation, notwere, groundwater could be present in ites present on the operator. GWNO GROUNDING WATER NOT DESERVED - Observation for the wader yoo and the scavation of downey for the origon period. SAMPLING AND TESTING Sundard Panetration Test to AS1289.6.3.1-2004 GT1 11 S108	НА	Hand Auger	ADH	Hollow Auger	NQ	Diamond Core - 47 mm							
NDD Non-destructive digging RAB Rotary Air Blast HQ Diamond Core - 63 mm AD' Auger Dilling RC Reverse Circulation HML Diamond Core - 63 mm Y V-Bit PT Push Tube EX Tracked Hydraulic Exavator ** V-Bit PT Push Tube EX Tracked Hydraulic Exavator PENETRATION RESISTANCE Rabid penetration/ excavation possible at an acceptable rate with moderate effort from equipment used. M M Medium Resistance Penetration/ excavation is possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable ware to equipment used. Modium Resistance Penetration/ excavation is possible without risk of damage or unacceptable ware to equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable ware to equipment used. Water Seepage Complete Water Loss GRUNDWATER NOT OBSERVED - Observation of coundwater, whether present on risk was not possible due to dilling water sufface seepage or cave in of the borholoir test pit. GRUNDWATER NOT DESERVED - Observation of coundwater, whether present on risk was not possible due to dilling water sufface seepage or cave in of the borholoir test pit. GWNE GROUNNWATER NOT DESERVED - Observation of coundwater, whether present	DT	Diatube Coring	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm							
AD* Auger Drilling RC Reverse Circulation HMLC Diamond Core - 63 mm V V-Bit PT Push Tube EX Tracked Hydraulic Excavator V V-Bit PT Push Tube EX Tracked Hydraulic Excavator PH Tobit.cg. AD/T WB Washbore HAND Excavated by Hand Methods PENETRATION RESISTANCE L Low Resistance Repid penetration/ excavation possible at a acceptable rate with moderate effort from equipment used. M Medium Resistance Penetration/ excavation is possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable was to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or diming tools and experience or the operator. WATER Standing Water Lovel Partial water loss GWNO GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to dilling water, surface sepage or cave in the borehole/ test pit. GWNNE GROUNDWATER NOT DOSERVED - Observation of groundwater due to here exclusion. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been inf con pre form. SAMPLING AND TESTING PT Strandard Peretration	NDD	Non-destructive digging	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm							
V V-Bit T-C-Bit, e.g., AD/T PT WB Push Tube Washbore EX Tracked Hydraulic Excavator HAND Excavator by Hand Methods PENETRATION RESISTANCE Low Resistance Rapid penetration/ excavation possible with little effort from equipment used. M M Medium Resistance Penetration/ excavation possible at an acceptable rate with moderate effort me equipment used. H High Resistance Penetration/ excavation is possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible without fisk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER ✓ Standing Water Level ✓ Partial water loss GWNO GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water. strates espense or even-in of the obrehole/ test pit been left open for a longer period. SMMPLING AND TESTING SMPLING AND	AD*	Auger Drilling	RC	Reverse Circulation	HMLC	Diamond Core - 63 mm							
T TC-Bit, e.g. AD/T WB Washbore HAND Excavated by Hand Methods PENETRATION RESISTANCE L Low Resistance Rapid penetration/ excavation possible with little effort from equipment used. M Medium Resistance Penetration/ excavation possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible with out risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or diffing tools and experience of the operator. WATER Standing Water Level Partial water loss CWNO GROUNDWATER NOT OBSERVED - Obsenation of the bornhold (sagre), whether present no not, was not possible due to dilling outsit surface sampage or cave in of the bornhold (sagre), whether present no not, was not possible due to dilling outsit surface sampage or cave in of the bornhold (sagre), whether present no not, was not possible due to dilling outsit surface sampage or cave in of the bornhold (sagre), whether present no not, was not possible due to dilling outsit surface sampage or cave in of the bornhold (sagre), whether present no not, was not possible due to the outsit of the due to bornhold (sagre), whether present no not, was not possible due to dilling outsit and and penetration Test to AS1289.6.3.1-2004 4.7.11 N=14 4.7.11 = Blows per 1500m. N = Blows per 1500m. BORD Standard Penetration Test to AS1289.6.3.1-2004 4.7.11 N=16 <td< th=""><th>*V</th><th>V-Bit</th><th>РТ</th><th>Push Tube</th><th>EX</th><th>Tracked Hydraulic Excavator</th></td<>	*V	V-Bit	РТ	Push Tube	EX	Tracked Hydraulic Excavator							
PENETRATION RESISTANCE L Low Resistance Rapid penetration/ excavation possible with little effort from equipment used. M Medium Resistance Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER Standing Water Level Standing Water Seepage GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, subjective and are dependent on many factors, including equipment present or not, was not possible due to drilling water subjective or al onger period. WATER Standing Water ISEN TO OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, subjective and are dependent on the period of the period	*T	TC-Bit, e.g. AD/T	WB	Washbore	HAND	Excavated by Hand Methods							
L Low Resistance Rapid penetration/ excavation possible with little effort from equipment used. M Medium Resistance Penetration/ excavation possible at an acceptable rate with moderne effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER ✓ Standing Water Level ✓ Partial water loss ✓ Water Seepage ✓ Complete Water Loss GWNO GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNIE GROUNDWATER NOT CBSERVED - Observation of proundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNIE GROUNDWATER NOT CBSERVED - Standard Proversion Test to AS1289.6.3.1-2004 AF./1 1- Blows per 130mm. N = Blows per 300mm penetration following a 150mm seating drive 300mm penetration following a 150mm seating drive 300mm Standard Penetration occurred under the nammer and ord weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Disturbed Sample US0	PENE	TRATION RESISTANCE											
M Medium Resistance Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used. H High Resistance Penetration/ excavation is possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER ✓ Standing Water Level ✓ Partial water loss ØWNO GROUNDWATER NOT OBSERVED - Observation of porchel/ test pit was dry soon after excavation. However, groundwater could be present in less premeable strata. Inflow may have been observed had the borehol/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit was dry soon after excavation. However, groundwater could be present in less premeable strata. Inflow may have been observed had the borehole/ test pit was dry soon after excavation. However, groundwater could be present in less premeable strata. Inflow may have been observed had the borehole/ test pit was dry soon after excavation. However, groundwater could be present in ess premeable strata. Inflow may have been observed had the borehole/ test pit deal dry fit in strong present in case present in less present on tot may interval are reported. N is not reported Strong have as a may have been observed had the borehole/ test pit deal dry fit in strong present in case present account on tot was independent on the lamber of dry weight nn/y, N<1 Standard	L	Low Resistance	Rapid penet	ration/ excavation possible wi	th little effort from e	equipment used.							
High Resistance Penetration/ excavation is possible but at a slow rate and requires significant effort from equipment used. R Refusal/Practical Refusal No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER ✓ Partial water loss Water Seepage ✓ Complete Water Loss GWN0 GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole' test pit was dry soon after excavation. However, groundwater could be present in tests premeable strata. Inflow may have been observed had the borehole' test pit was dry soon after excavation. However, groundwater could be present in tests premeable strata. Inflow may have been observed had the borehole' test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Test to AS1289.6.3.1-2004 47,111 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 300mm penetration following a 150mm seating drive 300mm RW Penetration occurred under the markemer and rod weight only, N<1	м	Medium Resistance	Penetration/	excavation possible at an ac	ceptable rate with r	noderate effort from equipment used.							
equipment used. R Refusal/Practical Refusal No turther progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER Image: Complete Water Loss Water Seepage Complete Water Loss GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWN0 GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Test to AS1289.6.3.1-2004 Strandard Penetration Test to AS1289.6.3.1-2004 Standard Penetration occurred under the rol weight only, Ne1 RW Penetration occurred under the rol weight only, Ne1 RW Penetration occurred under the rol weight only, Ne1 BMB Hammer double bounding on anvil, N is not reported Sampling Distrubed Sample US0 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Field Permeability test over section noted PP Pockel Penetronet	Н	High Resistance	Penetration/	enetration/ excavation is possible but at a slow rate and requires significant effort from									
R Refuse/Practical Refusal No further progress possible winduit insk of damage of unacceptable weat to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator. WATER Standing Water Level Water Seepage ✓ Complete Water Loss GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWN0 GROUNDWATER NOT COSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWN1 GROUNDWATER NOT ENCOLINERED - Borehold/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING SPT SHT 47,711 Hallows per 500mm. N = Blows per 300mm penetration following a 150mm seating drive anyther practical refusal occurred under the rol weight only, N-1 WW Penetration occurred under the rol weight only, N-1 WW Penetration occurred under the rol weight only, N-1 WW Penetration occurred under the rol weight only, N-1 WW Penetration occurred under the rol weight only, N-1 WW Penetration oc	_		equipment u	sed.	6 1								
These assessments are subjective and are dependent on many factors, including equipment power and weight, conductor or excavation of drilling tools and experience of the operator. WATER	R	Refusal/Practical Refusal	No further p	ogress possible without risk of	of damage or unacc	ceptable wear to equipment used.							
WATER ✓ Standing Water Level ✓ Partial water loss > Water Seepage Complete Water Loss GWN0 GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole' test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole' test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole' test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole' test pit. SAMPLING AND TESTING Sampling And Penetration Test to AS1289.6.3.1-2004 47,111 N=18 4.7,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 3080mm With Penetration occurred under the hammer and dowleght only. N-1 HW Penetration occurred under the hammer and dowleght only. N-1 HB Hammer double bouncing on anvil. N is not reported Sampling GS DS Disturbed Sample CS Sample for environmental testing BDS Buk disturbed Sample VS Water Sample VS Field Permeability test over section noted FYP Field Vane Shear test expressed as instrument reading in kPa WP Ponetariation test CS Gample <th>drilling</th> <th colspan="12">These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator.</th>	drilling	These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator.											
Standing Water Level Partial water loss Water Seepage Complete Water Loss GWN0 GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to dniling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT DENCOUNTERED - Borehole/ test pit was dry soon after excavation. However, groundwater, outlate be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Test to AS1289.6.3.1-2004 \$\phi_111 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30080mm Where practical refusal occurred under the harmer and rod weight only, N-1 HB Harmer double bouncing on anvil, N is not reported Sampling Disturbed Sample SS Sample for environmental testing BOS Disturbed Sample SS Water Sample US0 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Field Permeability test over section noted FVP Field Permeability test over section noted FVP Field Penterstation test GBO Dynamic Cone Penetration test MSS Battic Cone Penetration testst with	WATE	R											
Water Seepage Complete Water Loss GWN0 GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Test to A\$1289.6.3.1-2004 47,11 N=18 47,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the hammer and rod weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Disturbed Sample SS Sample for environmental testing BOS Disturbed Sample Sub Water Sample Field Permeability test over section noted FVS Field Permeability test over section noted PD Pocket Penetration test with pore pressure dus instrument reading in kPa WY Pressuremeter test over section noted PD Pocket Penetration test with pore pressure (u) measurement GeologicCAL BOUNDARIES <th></th> <th>aggreen Standing Water Let</th> <th>evel</th> <th></th> <th>\lhd Partial v</th> <th>vater loss</th>		aggreen Standing Water Let	evel		\lhd Partial v	vater loss							
GWNO GROUNDWATER NOT OBSERVED - Observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave-in of the borehole/ test pit. GWNE GROUNDWATER NOT ENCOUNTERED - Borehole/ test pit was of yoson after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING Standard Penetration Test to AS1289.6.3.1-2004 \$\frac{1}{1}1 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive \$0/80mm Where practical refusal occurs, the blows and penetration following a 150mm seating drive \$0/80mm Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported Sampling Bample for environmental testing BSS Sample for environmental testing BDS Bulk disturbed Sample SS Gas Sample PP Field Permeability test over section noted FVS Field Penetration Detector reading in ppm PM Prockent Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests DCS Field Vane Shear test expressed as instrument reading in kPa WPT Water Penetrometer test expressed as instrument reading in kPa		▷Water Seepage			Comple	te Water Loss							
GWNE GROUNDWATER NOT ENCOUNTERED - sorchold/test pit was dry soon after excavation. However, groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING SPT Standard Penetration Test to AS1289.6.3.1-2004 4,7,11 N=18 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration for that interval are reported, N is not reported RW Penetration occurred under the tod weight only, N-1 HW Penetration occurred under the harmer and rod weight only, N-1 HB Harmer double bouncing on anvil, N is not reported Sampling Disturbed Sample CS Gas Sample Uso Penetration occurred under the stange and rod weight only, N-1 HB Harmer double bouncing on anvil, N is not reported Sampling Disturbed Sample CS Gas Sample Sample Uso Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Field Permeability test over section noted FVS Field Permeability test over section noted PD Protocket Penetrometer test expressed as instrument reading in RPa WT Water Pressure test Core Penetration test CP	GWNG	GROUNDWATE	ER NOT OBS	ERVED - Observation of gr	oundwater, whethe	r present or not, was not possible							
Given between the less permeable strata. Inflow may have been observed had the borehole/ test pit been left open for a longer period. SAMPLING AND TESTING SPT Standard Penetration Test to AS1289.6.3.1-2004 4,7,11 N=18 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30%0mm Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported Penetration occurred under the tod weight only, N<1	CIANNIE	- due to drilling wat	er, sufface see	Page or cave-in of the borent:	ole/ test pit. st pit was dry soon	after excavation However							
been left open for a longer period. SAMPLING AND TESTING SPT Standard Penetration Test to AS1289.6.3.1-2004 4,7,11 N=18 4,7,11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 30x80mm Where practical refusal occurrs, the blows and penetration following a 150mm seating drive 80x80mm Where practical refusal occurs, the blows and penetration following a 150mm seating drive 80x80mm Where practical refusal occurs, the blows and penetration following a 150mm seating drive 80x80mm Where practical refusal occurs, the blows and penetration following a 150mm seating drive 80x80mm Penetration occurred under the nammer and rod weight only, N<1 HW Penetration occurred under the rod weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Disturbed Sample SS Sample for environmental testing BDS Bulk disturbed Sample US0 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Field Permeability test over section noted FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoenisation Detector reading i	GWNE	groundwater could	d be present in	less permeable strata. Inflow	may have been of	oserved had the borehole/ test pit							
SAMPLING AND TESTING SPT Standard Penetration Test to A\$1289.6.3.1-2004 4,7,111=18 4,7,11 = Blows per 150mm. N = Blows and penetration following a 150mm seating drive 30/80mm Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the nammer and rod weight only, N-1 HW Penetration occurred under the nammer and rod weight only, N-1 Bampling Bample SS Disturbed Sample ES Sample for environmental testing BDS Bulk disturbed Sample CS Gas Sample WS Water Sample US0 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing FP FIeld Permeability test over section noted FVS Frield Vane Shear test expressed as instrument reading in kPa PP Potoket Ponetrometer test over section noted PP Protoionisation Detector reading in ppm PM Prossure tests DCP Dynamic Cone Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests DCP Dynamic Cone Penetrometer test over ses		been left open for	a longer perio	d.									
SP1 Standard Penetration 1est to AS1289.6.3.1-2004 A7,11 N=18 4,7.11 = Blows per 150mm. N = Blows per 300mm penetration following a 150mm seating drive 80/80mm Where practical refusal occurs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the rod weight only, N<1 HB Harmer double bouncing on anvil, N is not reported Sampling Disturbed Sample ES Sample for environmental testing BDS Bulk disturbed Sample CS Gas Sample VS Water Sample US0 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Field Permeability test over section noted FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoinisation Detector reading in ppm PM Pressuremeter test over section noted PP Pocket Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES	SAMP		·· - · ·	04000 0 0 4 0004									
Solve Where practical refusal occurrs, the blows and penetration for that interval are reported, N is not reported RW Penetration occurred under the hammer and rod weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Disturbed Sample ES Sample for environmental testing BDS Bulk disturbed Sample GS Gas Sample WS Water Sample US0 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Field Permeability test over section noted FVS Field Permeability test over section noted FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PD Photoionisation Detector reading in ppm PM Pressuremeter test over section noted PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests CPT Static Cone Penetration test CPT Static Cone Penetration test CPT Static Cone Penetration test (position known) (position approximate) (interpreted or inferred) (interpreted or inferred) <th>SPI 4.7.11 N</th> <th>=18 5tandard Penel 4,7,11 = Blows</th> <th>per 150mm.</th> <th>N = Blows per 300mm pene</th> <th>tration following a</th> <th>150mm seating drive</th>	SPI 4.7.11 N	=18 5tandard Penel 4,7,11 = Blows	per 150mm.	N = Blows per 300mm pene	tration following a	150mm seating drive							
RW Penetration occurred under the harmer and rod weight only, N<1 HW Penetration occurred under the harmer and rod weight only, N<1 HB Hammer double bouncing on anvil, N is not reported Sampling Disturbed Sample ES Sample for environmental testing BDS Bulk disturbed Sample GS Gas Sample WS Water Sample U50 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Field Permeability test over section noted FVS Field Vame Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoionisation Detector reading in ppm PM Pressuremeter test over section noted PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests DCP Dynamic Cone Penetrometer test CPTu Static Cone Penetrometer (position approximate) GEOLOGICAL BOUNDARIES $-?-?-?-?-= Boundary (interpreted or inferred) $	30/80mn	Where practical	refusal occurs	s, the blows and penetration f	or that interval are	reported, N is not reported							
HBHammer double bouncing on anvil, N is not reportedSamplingDSDisturbed SampleESSample for environmental testingBDSBulk disturbed SampleGSGas SampleWSWater SampleU50Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing FPField Permeability test over section notedFVSField Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value)PIDPhotoionisation Detector reading in ppmPMPressuremeter test over section notedPPPocket Penetrometer test expressed as instrument reading in kPaWPTWater Pressure testsDCPDynamic Cone Penetrometer testCPTuStatic Cone Penetration testCPTuStatic Cone Penetration test with pore pressure (u) measurementGEOLOGICAL BOUNDARIES= Observed Boundary??= Boundary (interpreted or inferred)ROCK CORE RECOVERYTCR=Total Core Recovery (%)RQD = Rock Quality Designation (%) $= \frac{Length of core rum}{Length of core rum} × 100$	RW HW	Penetration occ	urred under th urred under th	e rod weight only, N<1 e hammer and rod weight on	v, N<1								
Sampling DS Disturbed Sample ES Sample for environmental testing BDS Bulk disturbed Sample GS Gas Sample WS Water Sample U50 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing F FP Field Permeability test over section noted FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoionisation Detector reading in ppm PM Pressuremeter test over section noted PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests DCP Dynamic Cone Penetrometer test CPT Static Cone Penetration test CPT Static Cone Penetration test CPTu Static Cone Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES $-?-?-?-?-==Boundary (interpreted or inferred) measurement TCR=Total Core Recovery (%) RQD = Rock Quality Designation (%) = Length of core rum × 100 = Statial lengths of core > 100mm Length of core rum × 100 $	HB	Hammer double	e bouncing on	anvil, N is not reported									
Bis Sample for environmental testing BDS Bulk disturbed Sample GS Gas Sample WS Water Sample U50 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing F FP Field Permeability test over section noted FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoionisation Detector reading in ppm PM Pressuremeter test over section noted PP Pocket Penetrometer test QP Dynamic Cone Penetration test CPT Static Cone Penetration test CPT Static Cone Penetration test CPTu Static Cone Penetration test GEOLOGICAL BOUNDARIES $-?-?-?-==Boundary$ (interpreted or inferred) ROCK CORE RECOVERY TCR=Total Core Recovery (%) RQD = Rock Quality Designation (%) $= \frac{Length of core run}{Length of core run} × 100$ $= \frac{\Sigma Axial lengths of core > 100mm}{Length of core run} × 100$	Sampli	ng Disturbed Sam	ماد										
BDS Bulk disturbed Sample GS Gas Sample WS Water Sample U50 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing Field Permeability test over section noted FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoionisation Detector reading in ppm PM Pressuremeter test over section noted PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests DCP Dynamic Cone Penetrometer test CPTu Static Cone Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES ??= Boundary (interpreted or inferred) mediation core Recovery (position approximate) ROCK CORE RECOVERY TCR=Total Core Recovery (%) RQD = Rock Quality Designation (%) $= \frac{Length of core recovered}{Length of core run} × 100$ $= \frac{\SigmaAxial lengths of core > 100mm}{Length of core run} × 100$	ES	Sample for env	ironmental test	ing									
GS Gas Sample WS Water Sample U50 Thin walled tube sample - number indicates nominal sample diameter in millimetres Testing F FP Field Permeability test over section noted FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoionisation Detector reading in ppm PM Pressuremeter test over section noted PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water One Penetrometer test CPT Static Cone Penetrometer test CPT Static Cone Penetration test CPTu Static Cone Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES $-?-??=$ Boundary (interpreted or inferred) measurement (interpreted or inferred) ROCK CORE RECOVERY TCR=Total Core Recovery (%) RQD = Rock Quality Designation (%) $= \frac{Length of core recovered}{Length of core run} × 100$	BDS	Bulk disturbed S	Sample										
Initial content of the sample sample of the sample of the sample of the sample of	GS	Gas Sample Water Sample											
Testing FP Field Permeability test over section noted FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoionisation Detector reading in ppm PM Pressuremeter test over section noted PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests DCP Dynamic Cone Penetrometer test CPT Static Cone Penetration test CPTu Static Cone Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES ??= Boundary (interpreted or inferred) measure (interpreted or inferred) ROCK CORE RECOVERY TCR=Total Core Recovery (%) RQD = Rock Quality Designation (%) $= \frac{Length of core recovered}{Length of core run} × 100$	U50	Thin walled tub	e sample - nur	nber indicates nominal sampl	e diameter in millim	netres							
FP Field Permeability test over section noted FVS Field Vane Shear test expressed as uncorrected shear strength (sv= peak value, sr= residual value) PID Photoionisation Detector reading in ppm PM Pressuremeter test over section noted PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests DCP Dynamic Cone Penetrometer test CPT Static Cone Penetration test CPTu Static Cone Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES $-?-?-?-=$ Boundary (interpreted or inferred) ROCK CORE RECOVERY TCR=Total Core Recovery (%) RQD = Rock Quality Designation (%) $= \frac{Length of core reun}{Length of core run} × 100$ $= \frac{\Sigma Axial lengths of core > 100mm}{Length of core run} × 100$	Testing	l		attent water d									
PIDPhotoinisation Detector reading in ppmPMPressuremeter test over section notedPPPocket Penetrometer test expressed as instrument reading in kPaWPTWater Pressure testsDCPDynamic Cone Penetrometer testCPTStatic Cone Penetration testCPTuStatic Cone Penetration test with pore pressure (u) measurementGEOLOGICAL BOUNDARIES $=$ Observed Boundary (position known) $=$ Observed Boundary (position approximate)ROCK CORE RECOVERYTCR=Total Core Recovery (%)RQD = Rock Quality Designation (%) $= \frac{Length of core run}{Length of core run} \times 100$	FP	Field Permeabl Field Vane She	ar test express	ection noted and as uncorrected shear stre	ngth (sv= peak val	ue_sr= residual value)							
PM Pressuremeter test over section noted PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests DCP Dynamic Cone Penetrometer test CPT Static Cone Penetration test CPTu Static Cone Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES $??=$ Boundary (interpreted or inferred) ROCK CORE RECOVERY TCR=Total Core Recovery (%) RQD = Rock Quality Designation (%) $= \frac{Length of core recovered}{Length of core run} × 100$ $= \frac{\Sigma Axial \ length of \ core run}{Length of \ core run} × 100$	PID	Photoionisation	Detector read	ing in ppm	ingtil (ov – pour var								
PP Pocket Penetrometer test expressed as instrument reading in kPa WPT Water Pressure tests DCP Dynamic Cone Penetration test CPT Static Cone Penetration test CPTu Static Cone Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES = Observed Boundary (position known) (position approximate) ?= Boundary (interpreted or inferred) ROCK CORE RECOVERY RQD = Rock Quality Designation (%) = Length of core run × 100 = Static lengths of core run × 100 	PM	Pressuremeter	test over section	on noted	I.D.								
With the initial function is the problem of the p	PP MDT	Pocket Penetro Water Pressure	meter test exp	ressed as instrument reading	IN KPa								
CPT Static Cone Penetration test CPTu Static Cone Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES $??=$ Boundary (position known) $=$ Observed Boundary (position known) $??=$ Boundary (interpreted or inferred) ROCK CORE RECOVERY RQD = Rock Quality Designation (%) $=$ Length of core recovered Length of core run \times 100	DCP	Dynamic Cone	Penetrometer	test									
CPTu Static Cone Penetration test with pore pressure (u) measurement GEOLOGICAL BOUNDARIES $=$ Observed Boundary (position known) $==$ Observed Boundary (position approximate) $?-==$ Boundary (interpreted or inferred) ROCK CORE RECOVERY TCR=Total Core Recovery (%) RQD = Rock Quality Designation (%) $= \frac{Length of core recovered}{Length of core run} \times 100$ $= \frac{\Sigma Axial lengths of core run}{Length of core run} \times 100$	СРТ	Static Cone Per	netration test										
GEOLOGICAL BOUNDARIES	CPTu	Static Cone Per	netration test v	hth pore pressure (u) measur	ement								
= Observed Boundary (position known)= Observed Boundary (position approximate)= Boundary (interpreted or inferred)ROCK CORE RECOVERY TCR=Total Core Recovery (%)RQD = Rock Quality Designation (%)= $\frac{Length of core recovered}{Length of core run} \times 100$ = $\frac{\Sigma Axial lengths of core run}{Length of core run} \times 100$	GEOL	OGICAL BOUNDARIES			2 2	2 – Poundon							
ROCK CORE RECOVERYTCR=Total Core Recovery (%)RQD = Rock Quality Designation (%) $= \frac{Length of core recovered}{Length of core run} \times 100$ $= \frac{\sum Axial \ length of \ core run}{Length of \ core run} \times 100$		= Observed Boundary (position known)		= Observed Boundar (position approxima	y	(interpreted or inferred)							
TCR=Total Core Recovery (%)RQD = Rock Quality Designation (%) $= \frac{Length of core recovered}{Length of core run} \times 100$ $= \frac{\sum Axial \ length of \ core run}{Length of \ core run} \times 100$	ROCK	CORE RECOVERY											
$=\frac{\text{Length of core recovered}}{\text{Length of core run}} \times 100 \qquad \qquad =\frac{\sum Axial \text{ lengths of core } > 100mm}{\text{Length of core run}} \times 100$		TCR=Total Core Reco	overy (%)		RQD = Rock Qu	ality Designation (%)							
		$=\frac{Length of core recover}{Length of core run}$	<u>red</u> × 100		$=\frac{\sum Axial \ lengths}{Length \ of}$	of core > 100mm F core run × 100							

eiaus	tralia				METHO	O OF SO BORE	IL DES	SCRIPTION	USED ON PIT LOGS	
Contamination Rem	FILL		<u>36 36 36</u> 36 36 36 36 36 36	ORG (OL.	ANIC SOILS		 	CLAY (CL, C	CI or CH)	
\overline{Q}_{n}	COUBL BOULD	ES or ERS		SILT	(ML or MH)			SAND (SP c	or SW)	
00000	GRAVE	L (GP or GW)	Combinat sandy cla	tions o y	f these basic sy	ymbols may	be used to	indicate mixed ma	aterials such as	
CLASSIF Soil is broa Soil descri	ICATION A adly classified ption and clas	ND INFERRED and described in I sification.	STRATIGRAI Borehole and T	PHY est Pit	Logs using the	e preferred m	nethod give	en in AS 1726:201	7, Section 6.1 –	
PARTICL	E SIZE CH	ARACTERISTIC	S		GROUP S	YMBOLS				
Fraction	Component	s Sub	Size		Major Di	visions	Symbol	Desc	ription	
Oversize	BOULDERS	3	>200			% of on is	GW	mixtures, little o	or no fines, no dry ength.	
	COBBLES	Coarse	63 to 200)	solLS xcludin ter that	AVEL nan 50 ⁶ fractic .36mm	GP	Poorly graded gra mixtures, little o stre	avel and gravel-sand or no fines, no dry ength.	
	GRAVEL	Medium	6 7 to 19		n BD Soil e. Brea	GF ore th parse	GM	Silty gravel, grave	el-sand-silt mixtures, um dry strength.	
Coarse	ONVEL	Fine	2 36 to 6 7	7	ZAIN of s on is 75mr	м В О	GC	Clayey gravel,	gravel-sand-clay	
grained soil		Coarse	0.6 to 2.36	5 6	SE GF n 65% fractic 0.07	6 of 1 is	SW	Well graded sand little or no fines	d and gravelly sand, s, no dry strength.	
0011	SAND	Medium	0.21 to 0.6	6	DAR: e thai size	5 0% action mm	SP	Poorly graded sar little or no fines	nd and gravelly sand,	
		Fine	0.075 to 0.2	21	More	SAN thar transe fra 2.36	SM	Silty sand, sand-	silt mixtures, zero to	
Fine	SILT		0.002 to 0.0	75	-	More coar	SC	Clayey sand, sa medium to hi	Clayey sand, sandy-clay mixtures, medium to high dry strength	
grained soil	CLAY		<0.002		an g	> ss	ML	Inorganic silts of lo sands, rock flour	Inorganic silts of low plasticity, very fine sands, rock flour, silty or clayey fine	
⁶⁰	PLAST		TIES		SOILS exclud less tha	imit les	CL, CI	Inorganic clays plasticity, gravelly	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays,	
50 -			5 (M. *		NED S of soil tion is I '5mm	iquid L 5	OL	Silty clays, medium Organic silts and low plasticity.	n to high dry strength. organic silty clays of ow to medium dry	
40 - 40		CH or OH	118 A 111, 200		3FAI 35% 1 fract 0.07			Inorganic silts of h	ength.	
30 X INDE					INE (than sized	id t > 50%	MH	very high	dry strength.	
48TICIT		CI or OI MH	or OH		Aore over	Liqu Limi han (СН	very high	dry strength.	
	CL or OL CL : ML 10 20 30	ML or OL 40 50 60 LIQUID LIMIT W, %	70 80 90	100	High Orga so	nly anic il	PT	plasticity, medium Peat muck and o	to high dry strength. other highly organic oils.	
MOISTU	RE CONDIT	ON								
Symbol	Term	Description								
D	Dry	Non- cohesive and	d free-running.	r Soil	tanda ta atiak t	agathar				
W	Wet	Soils feel cool, dai	rkened in colou	ir. Soil ir. Soil	tends to stick t	ogether. free	water forn	ns when handling.		
Moisture content a liquid lim	content of collas follows: Mo it ($w \approx LL$), We	nesive soils shall b st, dry of plastic lin et, wet of liquid lim	be described in mit (<i>w</i> < PL); M it (<i>w</i> > LL),	relatio oist, ne	n to plastic limi ear plastic limit	it (PL) or liqu (w≈ PL); Mo	id limit (LL) bist, wet of) for soils with high plastic limit (<i>w</i> < F	ner moisture PL); Wet, near	
Symbol	Term	Undrained Shear	SPT "N" #	\vdash	Symbol	Torm		ensity Index %	SPT "N" #	
ریاری ۱/۹	Very Soft	Strength (kPa)	< 2					< 15		
S	Soft	>12 to ≤ 25	>2 to ≤ 4		L	Loose	ese e	>15 to ≤ 35	4 to 10	
F	Firm	>25 to ≤ 50	>4 to 8		MD	Medium D	Dense	>35 to ≤ 65	10 to 30	
St VSt	Stiff	$>50 \text{ to} \le 100$ >100 to ≤ 200	>8 to 15	-		Dens Very Do	e nse	>65 to ≤ 85	30 to 50	
H	Hard	>200	>30		v D	very De	130	200		
Fr In the abse # SPT corr and equipr	Friable ence of test re relations are n ment type.	sults, consistency ot stated in AS172	and density ma 26:2017, and m	ay be a ay be	assessed from subject to corre	correlations ections for ov	with the ob verburden p	served behaviour pressure, moisture	of the material. content of the soil,	
MINOR C		TS ant Guida					P-	onortion by Mea		
	, Presence	iust detectable by	feel or eve but	soil nr	operties little		Coar	se grained soils. <	5 %	
Add 'Trac	e or no diffe	rent to general pro	operties of prima	ary col	properties little	Fine grained soils: ≤ 5%				
Add 'With	or no diffe	rent to general pro	operties of prima	ary col	mponent		Fine	grained soil: 15 - 3	80%	
Prefix sol	general pr	easily detectable l operties of primar	by teel or eye in y component	ı conju	inction with the		Coars	se grained soils: >' e grained soil: >30	1∠% %	

TERMS FOR ROCK MATERIAL STRENGTH AND WEATHERING

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 -2017, Section 6.2 - Rock identification, description and classification.

ROCK MA	ROCK MATERIAL STRENGTH CLASSIFICATION										
Symbol	Term	Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide								
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.								
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.								
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.								
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.								
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.								
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.								
[#] Rock St	rength Test Res	ults 🔻	Point Load Strength Index, Is(50), Axial test (MPa)								
	Point Load Strength Index, Is(50), Diametral test (MPa)										

Relationship between rock strength test result $(Is_{(50)})$ and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. However UCS is typically 20 x $Is_{(50)}$.

ROCK MATERIAL WEATHERING CLASSIFICATION

		1						
Sym	bol	Term	Field Guide					
RS		Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.					
XW		Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.					
	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or					
DW	MW	Distinctly Weathered	may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.					
SW		Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.					
FR		Fresh	Rock shows no sign of decomposition or staining.					

ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 – 2017, Section 6.2 – Rock identification, description and classification.

DETAILED ROCK DEFI	ECT SP	ACING										
Defect Spacing						Bedding Thickness (Stratification)						
Spacing/width (mm)	Des	scriptor			Symbol	Term					Spacing (mm)	
		Seriptor			Cymbol	Thinly	/ lamir	nated			<6	
<20	Ext	remely Clos	se		EC	Lamir	nated				6 – 20	
20-60	Ver	y Close			VC	Very	thinly	bedded			20 - 60	
60-200	Clo	se			С	Thinly	/ bedc	led		60 – 200		
200-600	Me	dium			Μ	Medi	um be	dded		200 – 600		
600-2000	Wio	le			W	Thick	ly bed	ded			600 - 2,000	
2000-6000	Ver	y Wide			VW	Very	thickly	ly bedded > 2,000				
ABBREVIATIONS AND	DESCR	RIPTIONS F	FOR DEFEC	Т ТҮРЕ	ES							
Defect Type		Abbr.	Descriptio	on								
Joint		JT	Surface of May be clo	a fractu sed or f	ire or parting, forme filled by air, water o	d withou r soil or r	t displ ock sι	acement, acros Ibstance, which	s which th acts as c	ne rock has lit ement.	tle or no tensile strength.	
Bedding Parting		BP	Surface of layering/ be resulting in	fracture edding. planar	e or parting, across Bedding refers to th anisotropy in the ro	which the ne layerir ick mater	e rock ng or s rial.	has little or no t tratification of a	ensile str rock, ind	ength, paralle icating orienta	l or sub-parallel to ation during deposition,	
Contact		СО	The surfac	e betwe	en two types or age	es of rocl	۲.					
Sheared Surface		SSU	A near pla	nar, cur	ved or undulating s	urface w	nich is	usually smooth	n, polishee	d or slickensic	led.	
Sheared Seam/ Zone (Fault)		SS/SZ	Seam or zone with roughly parallel almost planar boundaries of rock substance cut by closely spaced (often <50 mm) parallel and usually smooth or slickensided joints or cleavage planes.									
Crushed Seam/ Zone (Fault)		CS/CZ	Seam or zo near-plana	one con r bound	nposed of disoriente laries. The brecciate	ed usuall ed fragm	y angu ents n	lar fragments on a be of clay, s	f the host silt, sand o	rock substan or gravel sizes	ce, with roughly parallel s or mixtures of these.	
Extremely Weathered XWS/XW Seam/ Zone XWS/XW			Seam of so	oil subst	tance, often with gra	adational	boun	daries, formed b	by weather	ering of the roo	ck material in places.	
Infilled Seam IS			Seam of so migrating in	oil subst nto joint	tance, usually clay o	or clayey	, with	very distinct rou	ghly para	llel boundarie	s, formed by soil	
Vein		VN	Distinct she	eet-like	body of minerals cr	ystallised	d withi	n rock through t	ypically o	pen-space fill	ing or crack-seal growth.	
NOTE: Defects size of	<100mr	n SS, CS a	Ind XWS. De	efects si	ize of >100mm SZ,	CZ and 2	XWZ.					
ABBREVIATIONS AND	DESCF	RIPTIONS F	FOR DEFEC	T SHA	PE AND ROUGHN	ESS						
Shape	Abbr.	Descrip	tion		Roughness	Abbr.	Des	cription				
Planar	PR	Consist	ent orientatio	on	Polished	POL	Shin	y smooth surfac	ce			
Curved	CU	Gradua orientat	l change in ion		Slickensided	SL	Groo	oved or striated	surface,	usually polish	ed	
Undulating	UN	Wavy s	urface		Smooth	SM	Smc	oth to touch. Fe	ew or no s	surface irregul	larities	
Stepped	ST	One or steps	more well de	efined	Rough	RO	Man Feel	y small surface s like fine to coa	irregulari arse sand	ties (amplitud lpaper	e generally <1mm).	
Irregular	IR	Many sl orientat	harp change ion	es in	Very Rough	VR	Man like	y large surface very coarse san	irregularit dpaper	ties, amplitude	e generally >1mm. Feels	
Orientation:	Ver Inc	tical Boreh lined Bore	holes – The d holes – The	dip (incli inclinati	ination from horizont	al) of the	defec angle	t. to the core axis				
ABBREVIATIONS AND	DESCR	IPTIONS F	OR DEFEC	Т СОАТ	ĨNG			DEFECT APE	RTURE			
Coating	Abbr.	Descript	ion					Aperture	Abbr.	Description	1	
Clean	CN	No visible	coating or ir	nfilling				Closed	CL	Closed.		
Stain	SN	No visible often limo	coating but nite (orange	surface -brown)	s are discoloured b	y stainin	g,	Open	OP	Without any i	infill material.	
Veneer	VNR	A visible c measure (coating of soi	il or min av be pa	neral substance, usu atchv	ually too	thin to	Infilled	-	Soil or rock i. quartz. etc.	e. clay, silt, talc, pyrite,	

Appendix B – Laboratory Certificates

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	– LABORATORY DETAILS						
Contact Client Address	Kaiyu Xu EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015						
Telephone	61 2 9516 0722	Telephone	+61 2 8594 0400						
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499						
Email	kaiyu.xu@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com						
Project	E24947.G03 10-16 Pacific Dr,Port Macquar	SGS Reference	SE214895 R0						
Order Number	E24947.G03	Date Received	11/12/2020						
Samples	3	Date Reported	18/12/2020						

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

ion

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Soluble Anions (1:5) in Soil by Ion Chromatography [AN245] Tested: 17/12/2020

			BH1M 10.5-10.95m	BH2M 6.0-6.45m	BH3 1.5-1.95m
			SOIL	SOIL	SOIL
			8/12/20 11:30	8/12/20 15:30	9/12/20 10:00
PARAMETER	UOM	LOR	SE214895.001	SE214895.002	SE214895.003
Chloride	mg/kg	0.25	69	26	12
Sulfate	mg/kg	5	41	170	50

pH in soil (1:5) [AN101] Tested: 17/12/2020

			BH1M 10.5-10.95m	BH2M 6.0-6.45m	BH3 1.5-1.95m
			SOIL	SOIL	SOIL
			8/12/20 11:30	8/12/20 15:30	9/12/20 10:00
PARAMETER	UOM	LOR	SE214895.001	SE214895.002	SE214895.003
pH	pH Units	0.1	3.8	3.9	4.1

Conductivity and TDS by Calculation - Soil [AN106] Tested: 17/12/2020

			BH1M 10.5-10.95m	BH2M 6.0-6.45m	BH3 1.5-1.95m
			SOIL	SOIL	SOIL
			8/12/20 11:30	8/12/20 15:30	9/12/20 10:00
PARAMETER	UOM	LOR	SE214895.001	SE214895.002	SE214895.003
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	110	140	53

Moisture Content [AN002] Tested: 16/12/2020

			BH1M 10.5-10.95m	BH2M 6.0-6.45m	BH3 1.5-1.95m
			SOIL	SOIL	SOIL
			8/12/20 11:30	8/12/20 15:30	9/12/20 10:00
PARAMETER	UOM	LOR	SE214895.001	SE214895.002	SE214895.003
% Moisture	%w/w	1	19.9	25.2	23.7

METHOD	
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.
***	Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for
 LNR analysis.
 Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

STS Geote	chnics	Pty	Ltd
-----------	--------	-----	-----

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 | Email: enquiries@stsgeo.com.au

Atterberg Limits and Linear Shrinkage Report

Project: E24947: 10-16 Pacific Drive, Port Macquarie	
Client: El Australia Pty Ltd	
Address: Suite 6.01, 55 Miller Street, Pyrmont NSW 2009	
Test Method: AS1289.3.1.2, 3.2.1, 3.1.1, 3.4.1, 2.1.1	

Project No.:	30951
Report No.:	20/4390
Report Date:	22/12/2020
Page:	1 of 1

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

STS / Sample No.	4718D-L/1	4718D-L/2		
Sample Location	Borehole 3	Borehole 4		
Material Description	Silty Clay, red brown grey, trace of gravel	Silty Gravelly Clay, red brown grey, trace of gravel		
Depth (m)	3.0-3.45	1.5-1.95		
Sample Date	9/12/2020	9/12/2020		
Sample History	Oven Dried	Oven Dried		
Method of Preparation	Dry Sieved	Dry Sieved		
Liquid Limit (%)	72	59		
Plastic Limit (%)	28	26		
Plasticity Index	44	33		
Linear Shrinkage (%)	14	13		
Mould Size (mm)	250	254		
Crumbing	N	N		
Curling	Ν	N		

Remarks:

Accredited for compliance with ISO/IEC

17025 - Testing The results of the tests, calibrations and/or NATA measurements included in this document are traceable to Australian/national standards NATA Accreditation Number 2750

Approved Signatory.....

Technician:

Orlando Mendoza - Laboratory Manager

DH

STS Geotechnics Pty Ltd

14/1 Cowpasture Place, Wetherill Park NSW 2164 Phone: (02)9756 2166 | Email: enquiries@stsgeo.com.au

Moisture Content of Soil and Aggregate Samples

Project: E24947: 10-16 Pacific Drive, Port Macquarie	Project No.:	30951
Client: El Australia Pty Ltd	Report No.:	20/4390
Address: Suite 6.01, 55 Miller Street, Pyrmont NSW 2009	Report Date:	22/12/2020
Test Method: AS1289.3.1.2, 3.2.1, 3.1.1, 3.4.1, 2.1.1	Page:	1 of 1

Sampling Procedure: Samples Supplied By Client (Not covered under NATA Scope of Accreditation)

STS / Sample No.	4718D-L/1	4718D-L/2		
Sample Location	Borehole 3	Borehole 4		
Material Description	Silty Clay, red brown grey, trace of gravel	Silty Gravelly Clay, red brown grey, trace of gravel		
Depth (mm)	3.0-3.45	1.5-1.95		
Sample Date	9/12/2020	9/12/2020		
Moisture Content (%)	22.6	13.2		

Remarks:

Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards

NATA Accreditation Number 2750

Approved Signatory.....

Orlando Mendoza - Laboratory Manager

Technician: DH

Appendix C – Important Information

Important Information

SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client And El Australia ("El"). The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

RELIANCE ON DATA

El has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. El has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, El will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to El.

GEOTECHNICAL ENGINEERING

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies. The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. El should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that EI be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

REPRODUCTION OF REPORTS

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

REPORT FOR BENEFIT OF CLIENT

The report has been prepared for the benefit of the Client and no other party. El assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of El or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

OTHER LIMITATIONS

El will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.